APJCP 2014,15(1):517–535. 103. Valizadeh H, Mohammadi G, Ehyaei R, Milani M, Azhdarzadeh M, Zakeri-Milani P, Lotfipour F: Antibacterial activity of clarithromycin loaded PLGA nanoparticles. Pharmazie Int J Pharm Sci 2012,67(1):63–68. 104. Hasani A, Sharifi Y, Ghotaslou R, Naghili B, Aghazadeh M, Milani M: Molecular screening of virulence genes in high-level gentamicin-resistant Enterococcus faecalis and Enterococcus faecium isolated from clinical
RAD001 chemical structure specimens in Northwest Iran. Indian J Med Microbiol 2012, 30:2. 105. Sharifi Y, Hasani A, Ghotaslou R, Varshochi M, Hasani A, Soroush MH, Aghazadeh M, Milani M: Vancomycin-resistant Enterococci among clinical isolates from north-west Iran: identification of therapeutic surrogates. J Med Microbiol 2012,61(4):600–602. 106. Farajnia S, Hassan M, HallajNezhadi S, Mohammadnejad L, Milani M, Lotfipour F: Determination of indicator bacteria in pharmaceutical samples by multiplex PCR. J Rapid Meth Aut Mic 2009,17(3):328–338. Competing interests The authors declare that they have no competing interests. Authors’ contributions SWJ conceived the
study check details and participated in its design and coordination. EA participated in the sequence alignment and drafted the manuscript. AA, RPA, SFA, HTN, YH, KNK, and MM helped in drafting the manuscript. All authors read and approved the final manuscript.”
“Background Chemiresistive sensors have aroused much attention in environment monitoring, industry and agriculture production, medical diagnosis, military, and public safety, etc. nowadays [1–5]. In order to meet the requirements of industry and other fields’ demands, semi-conducting metal oxide, organic semiconductors, and carbon materials, etc., which have high aspect ratio and large specific surface area, have been widely used as sensing materials and the excellent performances of the resultant devices the have been achieved [6–8]. Graphene, as a new member of carbon family, has emerged as a promising candidate for sensing because of its unique electronic, excellent mechanical, chemical,
and thermal properties [9–18]. Excellent sensing performance of graphene towards different kinds of gases, including NO2, NH3, H2O, CO, trimethylamine, I2, ethanol, HCN, dimethyl methylphosphonate (DMMP), and DNT, have been reported [19–26]. Generally, there are three main methods to prepare graphene materials: micromechanical exfoliation of graphite [16], chemical vapor deposition [27], and reduction of graphene oxide (GO) [28]. The resultant graphene materials can be considered as excellent candidates for gas sensing, especially for chemically reduced graphene oxide (rGO). The rGO sheets have great potential for using as chemiresistors [29–32] due to their scalable production, easy processability in solution, large available surface area, etc.